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Abstract
We investigate charge transport in disordered organic host–guest systems with a bimodal
Gaussian density of states (DOS). The energy difference between the two Gaussians defines the
trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular
lattice with site energies randomly drawn from the DOS, we obtain the dependence of the
charge-carrier mobility on the relative guest concentration, the trap depth, the energetic
disorder, the charge-carrier density and the electric field. At small and high guest
concentrations, our work provides support for recent semi-analytical model results on the
dependence of the mobility on the charge-carrier density at zero field. However, at the
cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility
attains a minimum, our results can almost be one order of magnitude larger than predicted
semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly
to the electric-field dependence of the mobility. A simple analytical expression is provided
which describes the effect. This result can be used in continuum drift-diffusion models for
charge transport in devices such as organic light-emitting diodes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding charge-carrier transport in disordered organic
host–guest systems is vital because of their application in
various electronic devices. For different purposes, these
systems are used in organic light-emitting diodes (OLEDs):
to harvest both singlet and triplet excitons [1] to decrease
injection barriers [2, 3] and to tune the emission color [4].
Host–guest systems have also been used to obtain light
amplification [5] in materials used for optical data storage and
image processing [6] in xerography [7] and in organic field-
effect transistors [8]. Apart from intentional doping, guest
molecules can be present unintentionally because of non-ideal
preparation processes.

4 Author to whom any correspondence should be addressed.

The charge-carrier mobility in host–guest systems is
substantially influenced by the guest if the energy of the
HOMO (highest occupied molecular orbital) and/or LUMO
(lowest unoccupied molecular orbital) of the guest molecule
lies within the energy gap of the host. Time-of-flight (TOF)
experiments [9–15] have revealed that there are then four
transport regimes (see figures 1(a)–(d)). For very small
guest concentrations the presence of guest molecules will not
significantly affect the charge transport (figure 1(a)). Beyond
a certain critical guest concentration, charge-carrier trapping at
the guest molecules gives rise to a decrease of the mobility
with increasing relative guest concentration, x (figure 1(b)).
In the absence of disorder, the trap-limited mobility, μ(x), is
described by the Hoesterey–Letson (HL) [16] expression

μ(x) = μ(0)

1 + x exp(�/kBT )
, (1)
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Figure 1. Different hopping regimes in a disordered host–guest
system. (a) Hopping via host sites (no influence of guest);
(b) hopping via host sites in the presence of a small amount of guest
sites (trap-limited transport); (c) hopping via both host and guest
sites; (d) hopping via guest sites. The DOS of host (solid lines) and
guest (dotted lines) and the offset � in between are schematically
indicated.

where μ(0) is the trap-free mobility, � is the trap depth,
kB is the Boltzmann constant and T is the temperature. At
a sufficiently large guest concentration the average distance
between the guest molecules can become sufficiently small, so
that both host and guest molecules participate in the charge-
carrier transport (figure 1(c)). Whether this cross-over regime
is actually reached depends on the extensions of the localized
wavefunctions of the host and guest molecules (see section 2).
For very large guest concentrations the mobility is then
predominantly due to hopping between the guest molecules
(figure 1(d)).

Various theoretical studies, using semi-analytical [17–20]
and Monte Carlo [21] methods, have been carried out to
understand the dependence of the charge-carrier mobility in
host–guest systems on the material parameters (host and guest
density, trap depth, width of the host and guest DOS) and on
the experimental conditions (temperature, carrier density and
electric field). The carrier-density dependence was studied
only recently, motivated by recent experimental and theoretical
proofs of the importance of that effect in pure systems [22–24].
Using semi-analytical approaches based on effective-medium
theory (EMT) and percolation theory, Coehoorn found that the
effect can also be very important in host–guest systems [19].
It was shown that the effect can provide an explanation for
experimental results obtained by Borsenberger et al [11] who
deduced from TOF studies trap-limited mobilities of the form
μ(x) ∝ x−n , with (depending on the material investigated) n
larger or smaller than the value of 1 expected from equation (1).

In spite of this progress, there are several unresolved
questions concerning the mobility in host–guest systems with
a bimodal Gaussian DOS. Firstly, the semi-analytical model
calculations of the carrier-density dependence of the mobility,
at arbitrary guest densities, have not yet been compared
with numerically exact solutions of the hopping problem.

In particular, it is of interest to investigate the mobility
in the cross-over regime between the trap-limited and trap-
to-trap hopping regimes (figure 1(c)), around the minimum
in the mobility. The mobility may then be expected to
be underestimated by effective-medium approaches, as any
statistical variation of the local guest concentration (towards
a larger and towards a smaller concentration) will lead to a
larger local mobility. Secondly, only limited studies have been
carried out on the electric-field dependence of the mobility.
From TOF experiments [10, 12, 21] it is known that in the
presence of guest molecules the electric-field dependence of
the mobility is much stronger than in pure host systems. So far,
the field dependence has only been studied by Fishchuk et al
[17] using the EMT, for small guest concentrations and in the
low carrier-density limit. The combined effect of the carrier-
density and electric-field dependence of the mobility has not
yet been studied theoretically.

In this paper, we present the results of numerically exact
calculations of the hopping mobility in host–guest systems,
from which we address both issues discussed above. We
focus on parameters which are most realistic for materials and
experimental conditions typical for OLED applications. For
example, the width, σ , of the Gaussian DOS is ∼0.10 eV,
so that σ/(kBT ) ∼ 4 at room temperature. A comparison
is made with the semi-analytical EMT results given in [19].
The agreement is shown to be excellent in the trap-limited
and guest-to-guest transport regimes, but not in the mixed
cross-over regime. As already anticipated above, the mobility
is then significantly larger than was obtained from the EMT
results. It will be argued that this is highly relevant to the
modeling of transport in the emissive layers of realistic small-
molecule OLED materials. Furthermore, we analyze the field
dependence of the mobility and show that it can be strongly
enhanced compared to the mobility that would be expected on
the basis of a simple ‘thermal detrapping’ model. An analytical
expression for the additional factor, describing ‘field-induced
detrapping’, is shown to provide a quite accurate description of
the results.

In section 2, we introduce the theoretical methods,
including a master-equation (ME) approach and a percolation
method. The ME approach used is comparable to that
employed previously to study transport in pure materials,
i.e. with a monomodal Gaussian DOS [23]. In section 3, we
give results for the dependence of the mobility on the guest
concentration, the carrier density and the electric field for a
bimodal Gaussian DOS with different values of the trap depth
and of the width of the host and guest Gaussian DOS. A
summary and conclusions are given in section 4.

2. Theory

2.1. Hopping model

We treat the host–guest systems, with a total molecular site
density Nt, as an array of sites on a regular cubic lattice,
with site energies which are randomly drawn from a bimodal
Gaussian density of states with a relative concentration x of
guest sites:

g(ε) = (1 − x)gh(ε) + xgg(ε), (2a)
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gh(ε) = 1√
2πσha3

exp

(
− ε2

2σ 2
h

)
, (2b)

gg(ε) = 1√
2πσga3

exp

(
− (ε + �)2

2σ 2
g

)
, (2c)

with σh and σg the widths of the DOS of host and guest,

respectively, and with a = N1/3
t the lattice constant. The center

of the DOS of the guest is offset with respect to the center of
the DOS of the host by −� (� > 0), the mean trap depth.
The effect of positional disorder has been investigated for a
pure system by Bässler [25] and was found not to influence the
mobility at small electric field. For a finite electric field it was
found that there is almost no influence if this disorder is below
a certain critical value. In the modeling of charge transport
in derivatives of poly-para-phenylene-vinylene (PPV) it was
found that it is not necessary to include the effect of positional
disorder [23]. Therefore, we will also disregard positional
disorder in the present work. The systems considered below
have typical sizes of 1003 lattice sites, which is large enough
to avoid finite-size effects.

The hopping between sites is described as a thermally
assisted tunneling process. Coupling to a bath of acoustical
phonons is assumed, leading to a hopping rate from site i to j
of the Miller–Abrahams form [26]:

Wi j = ν0 exp

(
−2αRi j − εi j + |εi j |

2kBT

)
, (3)

where ν0 is a hopping attempt rate, Ri j ≡ R j − Ri is the
distance vector between sites i and j , εi j ≡ ε j−εi−eE Ri j,x , E
is the electric field (applied in the x direction), e is the charge
of the carriers and α is the inverse wavefunction localization
length. We consider the case of equal localization lengths of
host and guest wavefunctions and take α−1 = 0.1 × a, as
in [23]. Charge-carrier hopping to a maximum distance of
2
√

3×a is considered, involving 124 sites around a central site.
For � = 23kBT , σh = σg = 4kBT , p = 10−4 carriers per site,
and varying guest concentration we did a test calculation within
the percolation approach for a maximum hopping distance of
5
√

3 × a, involving 1331 sites around a central site, and found
no significant difference in the mobility. This demonstrates
that our maximum hopping distance is large enough. Our
study does not include the very low temperature and/or very
large disorder parameter range within which variable-range
hopping over distances much larger than a is important. The
mobility of the charge carriers is determined from a numerical
solution of the Pauli master equation or a numerical solution of
a percolation problem. Both approaches are discussed in detail
in sections 2.2 and 2.3.

In general, the host and guest wavefunction localization
lengths are different. Such a situation has been studied by
Coehoorn using an effective-medium theory [19]. The ratio
of localization lengths determines the location of the minimum
in the mobility (cross-over regime, figure 1(c)). As we will
see below, the approach followed in [19] for determining the
cross-over guest concentration is quite accurate. Hence, we
refer to this reference for a discussion of this issue. If the
polarizabilities of the host and guest molecules are different,

the dielectric permittivity of the medium will change upon
changing the concentration of the guest and as a result the
localization length α−1 will change. Some experimental
results [7] indicate that this effect can occur. However, we
will leave this out of consideration. We will also disregard
changes in the polarizabilities under the application of an
applied electric field, since such nonlinear effects are negligible
for the considered field strengths.

2.2. Master-equation approach for calculating the mobility

In a stationary situation, the Pauli master equation for the
hopping process on a lattice of sites becomes

∑
j �=i

[−Wi j pi(1 − p j) + W ji p j(1 − pi)
] = 0, (4)

where pi is the probability that site i is occupied by a charge,
Wi j is given by equation (3) and where the factor 1 − pi

accounts, in a mean-field approximation, for the fact that
only one carrier can occupy a site, due to the strong on-
site Coulomb repulsion. We neglect the Coulomb interaction
between carriers on different sites. As shown by Cottaar
and Bobbert, the use of the mean-field approximation in ME
calculations of the mobility in a monomodal Gaussian DOS is
very accurate, also for the case of a finite carrier density [27].
Recently, Zhou et al carried out an explicit Monte Carlo
simulation for transport in a Gaussian DOS at finite carrier
densities including the Coulomb interaction between carriers
on different sites [28]. It was found that only at densities
exceeding 0.01 carriers per site the effect of the Coulomb
interaction becomes noticeable. We performed a test Monte
Carlo simulation including Coulomb interactions between the
charge carriers for a set of realistic parameters (� = 6kBT ,
σh = σg = 3kBT , x = 0.1, p = 10−3 carriers per site)
and compared the results with those of the master equation
for a range of electric fields and found that the differences
in the calculated mobility are within the error bars. We
therefore conclude that the effect of the Coulomb interaction
is insignificant in realistic situations.

We solve equation (4) for the occupational probabilities
pi by an iteration procedure outlined in [29] and [23],
for sites on a cubic lattice, as described in section 2.1,
and employing periodic boundary conditions. Once the
occupational probabilities pi are found, the charge-carrier
mobility μ can be calculated from

μ =
∑

i, j,i �= j Wi j pi(1 − p j)Ri j,x

pV E
, (5)

where p = ∑
i pi/V is the average charge-carrier density and

V is the system volume. The summations are over all sites in
the box considered. In the iteration scheme the convergence of
both pi (for all i ) and μ is checked. For a number of different
disorder configurations the mobility is evaluated and averaged
until this average is known with a precision better than 10%.
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2.3. Percolation model for calculating the mobility

For systems with large trap depths, �, no stable solutions could
be obtained using the ME approach. For such cases, we have
used a percolation model for calculating the mobility. The
model is valid in the limit of small electric fields. The hopping
mobility can then be conveniently obtained from a calculation
of the conductivity of a random-conductor network in which
the conductance between two nodes i and j is given by [30]

Gi j =
G0 exp

(
−2αRi j − |εi − εF| + |ε j − εF| + |ε j − εi |

2kBT

)
,

(6)

where εF is the Fermi energy and G0 = e2ν0/(kBT ). For
a given charge-carrier density, p, εF is determined by the
condition

p =
∫ ∞

−∞
dεg(ε)

1

exp[(ε − εF)/kBT ] + 1
, (7)

where g(ε) is given by equation (2a).
The conductivity of the system can be calculated

either by numerically solving Kirchhoff’s equations for
the whole network, or by estimating the ‘typical’ two-
site conductance using effective-medium [31] or percolation
techniques [30, 32]. We have followed the latter approach.
Apart from a prefactor of order unity the conductivity of the
system is then given by

	 ∼ Gc

a
. (8)

Gc is the so-called critical percolation conductance of the
network. The mobility follows from the conductivity using the
equation

μ = 	

ep
∼ Gc

epa
. (9)

We determine Gc by considering the conductance of a
large enough box-shaped conductor network in between two
electrodes, from which successively the connections with
increasing conductance are eliminated. Gc is then the last
conductance which is eliminated before the conductance of the
total system goes to zero, so that there is no percolating cluster
anymore which connects the two electrodes.

3. Results and discussion

3.1. Small electric fields—comparison with semi-analytical
results

In this subsection, a comparison is given between our
numerically exact results with those obtained from semi-
analytical approaches, including the EMT results presented
in [19], restricting ourselves to small electric fields. As
discussed in section 1, the transport regime in which we are
most interested is the cross-over regime between trap-limited
transport and trap-to-trap transport, where the mobility attains
a minimum. We have studied this regime using the percolation
model, which also for large trap depths is found to provide

Figure 2. Dependence of the mobility on the guest concentration x
obtained with the master-equation (squares) and percolation
(triangles) approach, for a host–guest system with a carrier density
p = 10−3/a3, with a host and guest DOS of width σh = σg = 3kBT ,
and a trap depth � = 9kBT (main panel) and � = 6kBT (inset).
Lines: results following from the equilibrium model. The different
hopping regimes (a)–(d) of figure 1 are indicated in the main panel.

stable solutions. In order to establish the precision of that
model, which contains an unknown prefactor of the order
of unity (see section 2.3), figure 2 gives a comparison with
the results from the ME approach. The figure shows the
guest-concentration dependence of the small-field mobility,
expressed in units of μ0 = a2ν0e/σh, for equal widths of
the host and guest DOS, σh = σg = 3kBT , at two different
trap depths, � = 6kBT and 9kBT , at a carrier concentration
(pa3) equal to 10−3. The four transport regimes, which were
already discussed in section 1 (see figures 1(a)–(d)), are clearly
visible. The results obtained with the percolation approach are
in very good agreement with the ME results. We conclude from
figure 2 that the trend predicted by the percolation approach
is correct and that the prefactor only slightly depends on the
guest concentration. This conclusion is supported by analyses
for other choices of the material parameters and the charge-
carrier concentration. The full lines in the figure (‘equilibrium
model’) will be discussed in section 3.2.

In figure 3 we depict the guest-concentration dependence
of the normalized small-field mobility calculated within the
ME and percolation approach for a system for which σh =
σg = 4kBT , for three different trap depths, and for a carrier
concentration of 10−4. At room temperature, the trap depth
�0 = 11.512kBT corresponds to an energy of 0.30 eV.
For large trap depths only the results from the percolation
model are shown, as the ME approach did not lead to well-
converged results around the mobility minimum. The dashed
lines give the dependence of the charge-carrier mobility on
guest concentration for different trap depths, as given in
figure 4(c) of [19], which are calculated for exactly the
same parameters. The latter results were obtained within
the Movaghar–Schirmacher (MS) effective-medium model. In
the trap-limited and in the guest-to-guest transport regimes,
the agreement with the MS model results is very good.
However, close to the mobility minimum the MS model yields
a significant underestimation of the mobility.

The observed underestimation of the mobility near the
mobility minimum may be viewed as a failure of the

4
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Figure 3. Dependence of the mobility on the guest concentration x ,
normalized by the mobility at x = 0, obtained with the
master-equation (squares) and percolation (triangles) approach, for a
host–guest system with a carrier density p = 10−4/a3, with a host
and guest DOS of width σh = σg = 4kBT , and three different trap
depths, with �0 = 11.512kBT . Dashed lines: results from [19]
obtained with the Movaghar–Schirmacher model. Solid lines: results
following from the ‘equilibrium model’.

effective-medium approach to properly consider the actual
percolating pathways. Random statistical variations of the
local guest concentration around the mobility minimum, to
smaller and to larger concentrations, lead to regions with an
enhanced mobility. We believe that this finding is relevant
to the precise modeling of transport in high-performance
small-molecule OLEDs, containing host–guest-type matrix-
dye emissive layers. The range of trap depths studied, from
0.30 to 0.60 eV, corresponds to values typically encountered
in such systems. Furthermore, the dye concentration in such
systems typically ranges from 1 to 10%. Figure 3, and also
previous experimental work [9–15], shows that the cross-over
to guest-to-guest hopping can coincide with this concentration
range.

In [19] it was shown that a very good agreement is
obtained in the trap-limited regime between the mobilities
calculated with the Movaghar–Schirmacher model, taking into
account a finite carrier density p = 10−6/a3, and the results of
the time-of-flight measurements of the mobility of [11]. Since
in this regime the present results agree very well with those
of [19] we can conclude that our results also agree with these
measurements.

3.2. Electric-field dependence of the mobility

Figure 4 shows the electric-field dependence of the mobility
as obtained from the ME approach (squares) for a system with
σh = σg = 3kBT and with � = 9kBT , as in the main panel
of figure 2, for a guest concentration x = 0.01 (indicated in
figure 2 by an arrow). The system is thus well in the trap-
limited regime. The values of �, σh and σg are equal to those
used in [17], in order to facilitate making a comparison with
these results (see below). Results are given for charge-carrier
concentrations equal to 10−5, 10−3 and 5 × 10−2.

At small fields, the mobility is strongly carrier-density-
dependent, as already predicted from the EMT [19]. The
mobility increases with increasing field, until it attains a

Figure 4. Dependence of the mobility on the electric field E for a
host–guest system with a guest concentration x = 0.01, with a host
and guest DOS of width σh = σg = 3kBT , and a trap depth
� = 9kBT , for three different carrier concentrations. Squares:
master-equation results. Solid lines: ‘equilibrium model’.
Dashed–dotted lines: ‘equilibrium model’ with field-induced
detrapping. For a carrier concentration of 10−3 the parameters are the
same as for the point indicated by the arrow in the main panel of
figure 2.

maximum at a field of the order σh/(ea) = 1, depending on
the charge-carrier density. When Eea/σh � 1, the mobility
decays as μ ∝ 1/E , as then only energetically downward
hopping along the direction of the electric field takes place,
leading to an electric-field-independent carrier velocity. We
analyze the lower-field parts of the curves by first considering
the simplest possible model within which the mobility in the
trap-limited regime is viewed as a result of the transport of
carriers which are thermally excited from trap to host sites, to
an extent determined by assuming thermal equilibrium. The
same assumption underlies the HL relationship (equation (1))
for the case of delta-function-shaped host and guest densities
of states. This thermal detrapping ‘equilibrium model’ may
be generalized to host–guest systems with a bimodal Gaussian
DOS by first calculating, for a certain carrier density p, the
Fermi energy, and then calculating the carrier density ph in the
host DOS from

ph = (1 − x)

∫ ∞

−∞
dεgh(ε)

1

exp[(ε − εF )/kBT ] + 1
. (10)

Within the framework of this model, the carrier-density and
field-dependent mobility is given by the fraction of carriers
which populates host states times the host mobility at the
corresponding carrier density:

μ(T, p, E) = ph

p
μh(T, ph, E). (11)

The dependence of the mobility on the carrier density, electric
field and temperature in a pure host system was already
calculated with the ME approach in [23], where the following
parameterization scheme was introduced:

μh(T, ph, E) ≈ μ(T, ph) f (T, E), (12)

with

μ(T, p) = μ0(T ) exp[ 1
2 (σ̂ 2 − σ̂ )(2pa3)δ], (13a)

5
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μ0(T ) = μ0 c1 exp
[−c2σ̂

2
]
, (13b)

δ ≡ 2
ln
(
σ̂ 2 − σ̂

)− ln(ln 4)

σ̂ 2
, (13c)

μ0 ≡ a2 ν0 e

σ
, (13d)

and

f (T, E)

= exp

⎡
⎣0.44(σ̂ 3/2 − 2.2)

⎛
⎝
√

1 + 0.8

(
Eea

σ

)2

− 1

⎞
⎠
⎤
⎦ ,

(14)

with c1 = 1.8 × 10−9, c2 = 0.42 and σ̂ = σ/kBT , where
in this case σ = σh. In figures 2 and 3, the full curves give
the mobility as predicted from this ‘equilibrium model’ at zero
field. It is seen that in the trap-limited regime the model then
provides an excellent prediction for the mobility. In figure 4,
the predictions as obtained from the ‘equilibrium model’ are
also indicated by the full curves. Only for the highest carrier
concentration considered, 0.05, is the agreement reasonable.
In that case, the situation is almost equal to that for the pure
host system, since all traps are filled. For the two lower carrier
concentrations considered, the simple ‘equilibrium model’
severely underestimates the field dependence of the mobility.
We attribute this to field-induced detrapping of carriers, which
was neglected in the ‘equilibrium model’.

We have developed a simple model to take field-induced
detrapping into account by noting that, as a result of the applied
field, carriers trapped on a guest site i are not in equilibrium
with carriers on host sites with a mean energy which is
displaced by an energy �, but (to a first approximation) with
carriers at host sites j with mean energies which are different
from � by an amount −eRi j · E, where E is the electric-field
vector. As we focus in this paper on transport at relatively large
temperatures, i.e. on the nearest-neighbor hopping transport
regime, we argue that to a good first approximation Ri j may
be taken equal to the average intersite distance, a (see also
figure 6 in [24]). On a cubic lattice, three different detrapping
processes can then be distinguished: detrapping from a guest
to a host site (i) along the electric field, (ii) opposite to the
electric field, and (iii) perpendicular to the electric field (with a
weight four times that of the other two processes). Therefore,
we propose to describe the increase of the mobility by field-
induced detrapping by inserting in equation (10) the following
effective field-dependent host DOS:

gh,eff(ε, E) = 1√
2πσha3

1

6

{
exp

(
− (ε − Eea)2

2σ 2
h

)

+ exp

(
− (ε + Eea)2

2σ 2
h

)
+ 4 exp

(
− ε2

2σ 2
h

)}
. (15)

The enhanced host carrier density leads, via equation (12), to
an enhanced mobility. From a more elaborate analysis, within
which the occupation probability of field-displaced host and
guest states is calculated in a more explicit way from host-
to-guest and guest-to-host Miller–Abrahams hopping rates, it
follows that the approach given above provides an excellent

Figure 5. Dependence of the mobility on the electric field E for a
host–guest system with a carrier density of p = 10−3/a3, with a host
and guest DOS of width σh = σg = 3kBT , and a trap depth
� = 6kBT , at three different guest concentrations. Squares:
master-equation results. Solid lines: ‘equilibrium model’.
Dashed–dotted lines: ‘equilibrium model’ with field-induced
detrapping. For the guest concentrations of 0.01 and 0.1 the
parameters are the same as for the two points indicated by the arrows
in the inset of figure 2.

approximation up to intermediate-size fields (Eea < σ ) [34].
The mobility resulting from the above approach is plotted in
figure 4 (dashed–dotted curves). We observe that this leads to
a very good agreement, especially for a carrier concentration
of 10−5, where the model is expected to work best. We note
that in the ME calculations not only nearest-neighbor hops are
taken into account, but also hops to 124 sites in a cube around
a central site. It would not be very difficult to include further
hops in the model. However, because of the rather small value
of the wavefunction localization length, α−1 = 0.1 × a, the
changes would be very small. We also note that field-induced
detrapping has been studied by several authors and that the
importance of the effect depends strongly on the precise shape
of the DOS. For example, for the case of a pure system with an
exponential DOS, hopping beyond the nearest neighbor can be
relevant, as shown by Marianer and Shklovskii [33].

The field dependence displayed in figure 4 for the lowest
carrier concentration, 10−5, may be compared with the results
obtained from the EMT prediction given by Fischchuk et al for
essentially the same material parameters but for a vanishing
carrier density ([17], curve 3 in figure 10(b)). Contrary to
this EMT prediction, we do not find a transition from a
log(μ) ∝ √

E to a log(μ) ∝ E shape of the field dependence
of the mobility with increasing field. Moreover, in contrast
to the EMT prediction, which does not saturate, our mobility
saturates and decays then as 1/E , as explained above.

In figure 5 we depict the electric-field dependence of
the mobility for the same parameter values as in the inset
of figure 2 for three different guest concentrations: x = 0
(pure host system), 0.01 and 0.1. These last two values
are indicated by the arrows in the inset of figure 2. The
figure contains the results obtained with the ME approach,
the ‘equilibrium model’, and the equilibrium model with field-
induced detrapping. In agreement with general trends observed
in experimental studies [21] the field dependence is seen to
increase strongly with increasing guest concentration. The
‘equilibrium model’ with field-induced detrapping correctly
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describes this trend. For the highest guest concentration
considered, x = 0.1, the regime is entered where guest-
to-guest hopping starts to contribute to the transport (see
figure 1(c)). Obviously, the ‘equilibrium model’ starts to fail
here. Firstly, it already underestimates the mobility at zero
field. Secondly, it is no longer possible to give a simple
description of the field dependence.

We note that OLED research is presently focusing on thin
dye-doped emissive layers of a few times 10 nm sandwiched
in between electron-and hole-transporting layers [35]. Since
such devices are operated at biases of a few volts and since
this voltage almost completely drops over the emissive layer,
a relatively large field of the order of 108 V m−1 is present
in this layer. With a typical value σ = 0.1 eV for the
width of the disorder such field strength corresponds to a value
eEa/σ ≈ 1 (taking 1 nm for a). At such a field strength
the field dependence of the mobility is very important (see
figures 4 and 5). Therefore, we expect very useful applications
of our model to such devices.

4. Summary and conclusions

We have investigated the hopping transport in host–guest
systems with a bimodal Gaussian density of states using
a master-equation approach and (at small electric fields) a
percolation model. The master-equation approach used is thus
the most sophisticated theoretical approach applied to these
systems. We have focused on material parameters which
are typical for OLEDs, and on transport at relatively high
temperatures in the nearest-neighbor hopping regime. The
main conclusions are:

(i) At all guest concentrations, the low-field mobility can
be described equally well with a numerical percolation
model as with the (for large trap depths less stable) master-
equation approach.

(ii) For small guest concentrations, in the trap-limited hopping
regime, the small-field mobility can be described very
well within an ‘equilibrium model’, in which the number
of carriers thermally activated from guest to host sites
is evaluated and in which these activated carriers are
assumed to move in the undisturbed density of states of
the host.

(iii) For intermediate guest concentrations, in the mixed
cross-over regime in between trap-limited transport and
guest-to-guest transport at which the mobility attains
a minimum, the mobility is significantly larger than
predicted from effective-medium theory. In section 3.1,
this has been argued to have much significance for the
modeling of high-performance OLEDs.

(iv) For high electric fields, the ‘equilibrium model’ fails
because it does not take the field-induced detrapping of
carriers into account. A simple model (section 3.2) has
been proposed for including this effect. It leads to a much
stronger dependence of the mobility on the electric field in
host–guest systems as compared to pure host systems, in
agreement with experiments.

We envisage that the approach introduced in this paper for
including field-induced detrapping might also be applicable to
transport in related systems, such as systems with a Gaussian
host DOS and an exponential trap DOS. Recently, Mandoc
et al [36] successfully used such a model DOS for analyzing
electron transport in poly-phenylene-vinylene (PPV) organic
semiconductors. The same ‘equilibrium model’ described by
equation (10) was used for calculating the mobility, but field-
induced detrapping was not taken into account. It would be
interesting to investigate the possible role of that effect.
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and Bässler H 2002 J. Phys.: Condens. Matter 14 9899

7

http://dx.doi.org/10.1038/25954
http://dx.doi.org/10.1117/12.563805
http://dx.doi.org/10.1016/S0009-2614(98)00337-6
http://dx.doi.org/10.1038/38979
http://dx.doi.org/10.1103/PhysRevLett.66.1846
http://dx.doi.org/10.1016/0379-6779(94)90075-2
http://dx.doi.org/10.1021/j150664a054
http://dx.doi.org/10.1002/(SICI)1099-0488(19990215)37:4<349::AID-POLB8>3.0.CO;2-M
http://dx.doi.org/10.1143/JJAP.38.117
http://dx.doi.org/10.1016/S0301-0104(98)00115-3
http://dx.doi.org/10.1143/JJAP.37.1945
http://dx.doi.org/10.1002/(SICI)1521-396X(199804)166:2<835::AID-PSSA835>3.0.CO;2-9
http://dx.doi.org/10.1016/0022-3697(63)90104-5
http://dx.doi.org/10.1103/PhysRevB.66.205208
http://dx.doi.org/10.1103/PhysRevB.73.115210
http://dx.doi.org/10.1103/PhysRevB.75.155203
http://dx.doi.org/10.1088/0953-8984/14/42/305


J. Phys.: Condens. Matter 20 (2008) 335204 Y Y Yimer et al

[21] Wolf U, Bässler H, Borsenberger P M and Gruenbaum W T
1997 Chem. Phys. 222 259

[22] Tanase C, Meijer E J, Blom P W M and de Leeuw D M 2003
Phys. Rev. Lett. 91 216601

[23] Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A,
Blom P W M, de Leeuw D M and Michels M A J 2005
Phys. Rev. Lett. 94 206601

[24] Coehoorn R, Pasveer W F, Bobbert P A and Michels M A J
2005 Phys. Rev. B 72 155206
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